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Abstract

Formal propagation of random errors in a mathematical expression follow a precise
prescription based on calculus. This requires the computation of the variation of the func-
tion with respect to each of the independent variables used to construct the function. These
variations are added in quadrature to compute the final numerical error. For complicated
expressions, computation of all the partial derivatives is often cumbersome and hence error
prone.

The fussy1 scripting language, described here, implements an algorithm for automatic
propagation of random measurement errors in an arbitrary mathematical expression. It
is internally implemented as a virtual machine for efficient runtime performance and can
be used as an interpreter by the user. A simple C binding to the interpreter is also pro-
vided. Mathematical expressions can be implemented as a collection of sub-expressions,
as sub-program units (functions or procedures) or as single atomic expressions. Errors are
correctly propagated when a complex expression is broken up into smaller sub-expressions.
Sub-expressions are assigned to temporary variables which can then be used to write the
final expression. These temporary variables are not independent variables and the infor-
mation about their dependence on other constituent independent variables is preserved and
used on-the-fly in error propagation.

The scripting syntax of fussy is similar to that of C. It is therefore easy to use with
minimal learning and can be used in every day scientific work. Most other related work
found in the literature is in the form of libraries for automatic differentiation. Only two
tools appear to have used it for automatic error propagation. Use of these libraries and tools
require sophisticated programing and are targeted more for programmers than for regular
every day scientific use. Also, such libraries and tools are difficult to use for correct error
propagation in expressions composed of sub-expressions.

1The name reflects the original intention of designing a language for fuzzy arithemetic. It is also a pun on those
who (wrongly) consider error propagation as too much fuss!
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1 Introduction

If ~x is a vector of independent experimentally measured quantities with associated random mea-
surement error δ~x, the formal error on a function f (~x) is given by

δ f =

√√∑
i

(
∂ f
∂xi

δxi

)2

(1)

Further, if f (~x) is a functional, e.g. f (~x) = g(h(k(~x))), then the partial derivative of f is given by
the derivative chain rule:

∂ f
∂xi

=
∂ f
∂h

∂h
∂k

∂k
∂xi

(2)

Therefore, for the computation of δ f , one requires:

1. the partial derivative of the function with respect to each independent variable (∂ f /∂xi)

2. δxi - the measurement error

3. chain rules of differential calculus for the mathematical operators (which will use the xi’s
and ∂ f /∂xi’s).

In the following sections, the implementation of an algorithm for automatic computation of
partial derivatives and propagation of random errors in an arbitrary mathematical expression is
described. The algorithm is implemented as a scripting language called fussy and can be used
as an interpreter by the user. The syntax is similar to that of the C language making it easy to use
in an interactive session or as a scripting environment. Each user defined variable in fussy is
treated as an independent variable and expressions can be constructed using an arbitrary number
of variables. It is error prone to express complicated expressions as single atomic statements
and usually the final expression is built out of sub-expressions and temporary variables. For
the purpose of random error propagation however, temporary variables are dependent on the
independent variables (normal user defined variables) on the right hand side of an assignment
operator. The algorithm described below does correct error propagation in the final expression
composed of such temporary variables. A special language feature is used to distinguish be-
tween such temporary and normal variables as well as to associate measurement errors with
numbers (see Appendix B.3).

Although it is possible to code Eq. 1 in other tools (Gillespie 1992; Harrison 1995; Bischof
et al. 1997), it requires sophisticated programing and learning often arcane, new programing
tools. This is usually time consuming and enough of a bother to discourage its use for the pur-
pose of error propagation in every-day scientific use. The work of Stoutemyer (1977) using the
REDUCE algebraic manipulation language (Hearn 1971, 1995) was one of the first which used
automatic symbolic differentiation for error analysis in single atomic mathematical expressions.
Harrison (1995) has used a similar approach and developed a tool for Mathematica2. There

2 c©2003 Wolfram Research, Inc.
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are program development libraries (Barton & Nackman 1994; Griewank et al. 1996; Tsukanov
& Hall 2003) for automatic differentiation which could be used for similar purpose. However
they too suffer from the same problem of requiring more effort from the user than is possible
in everyday work. Besides, most of these existing tools will be hard to use for multi-variate
expressions and functionals. They are even harder (if not impossible) to use directly for com-
plicated expressions expressed as a combination of sub-expressions. Apart from the difficulty
of use, the two tools which do use automatic differentiation for error propagation require access
and familiarity with other packages (the REDUCE package or the commercially sold package
Mathematica).

The fussy interpreter is implemented internally as a virtual machine (VM) with a stack of
its own. The derivative chain rule (Eq. 2) is implemented using a separate VM which has a sep-
arate stack per independent variable to hold the intermediate partial derivatives. At the terminal
nodes of a parsing tree (e.g. the ’=’ operator) the values from these stacks are used to evaluate
Eq. 1. A user program written in fussy is compiled into the VM instruction-set, referred to as
the op-codes, to manipulate the VM stack (VMS), call built-in functions, perform basic mathe-
matical operations or call user defined sub-program (functions or procedures). These op-codes
are function calls which perform the operation they represent (mathematical operators, built-in
function call or branching to a sub-program unit) as well as the steps required for automatic
error propagation. Since user defined programs/expressions are translated into these op-codes,
errors are correctly propagated in the mathematical expression in any arbitrary user program.

A simple C binding to the interpreter is also provided. The user program can be supplied to
the interpreter via an in-memory string using the function calc(char *InString, edouble
&ans, FILE *InStream, FILE *OutStream). The contents of the InString are parsed and
converted to a VM instruction set. The result of the execution of this program is returned in
ans. The last two arguments are not used in this case. Alternatively, if InString is set to NULL
and the last two arguments set to valid file pointers, the interpreter will take the input from
InFile and use OutFile as the output stream. A similar C++ interface of type calc(char
*InString, ostream &ResultStream, FILE *InStream, FILE *OutStream) writes the
result of the program supplied in InString or via the file pointer InStream to the output
stream ResultStream. OutStream in both interfaces is used as the output file for the error
messages.

For a better understanding, in Section 2 I describe the algorithm for automatic random
error propagation for the simpler case of a single variate expression. Section 3 describes the
complete algorithm, along with the logic for the various operators in the form of pseudo code.
The correctness of the algorithm is demonstrated in Section 4 using numerical examples. On the
lines of proof of correctness of the algorithm, it is also argued that the algorithm is general and
will work for any arbitrary expression. In Appendix A, a step-wise description of the algorithm
for a general mathematical expression is given. Appendix B describes the syntax of the fussy
language.
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Figure 1: The parsing tree for the expression f (x) = sin(x) ∗ cos(x) + sin(cos(x))

2 Error propagation: Single variable case

For the case where f is a function of a single measurable x, the right hand side of Eq. 1 can be
evaluated as follows. Each leaf of the parsing tree will either be (1) a constant, (2) a variable,
or (3) another sub-tree representing a sub-expression. The derivatives can be computed by the
repeated application of the derivative chain rule. Starting from the bottom of the tree, a value of
1 is pushed on the Derivative Stack (DS) (equivalent of putting ∂x/∂x on the stack) for every leaf
of the tree (which, at the bottom, correspond to the symbols from the symbol table or constants).
The nodes of a tree corresponds to one of the arithmetic operators (’+’, ’-’, ’/’, ’*’, ’ˆ’, and
’**’) or built-in functions, which are implemented as function calls. These functions push the
result of the operations on the VMS while the corresponding partial derivatives are pushed on the
DS.

The final result and the error propagation will in general use the values from both the stacks
(the VMS and the DS). E.g. for f (x) = sin(x) ∗ cos(x), when the execution reaches the node for
the ’∗’ operator, the VMS will have two values, namely sin(x) and cos(x). The DS also has two
values, namely the two derivatives ∂ sin(x)/∂x = cos(x) and ∂ cos(x)/∂x = − sin(x). The value
of f is pushed on the VMS, and its derivate (∂ sin(x)/∂x∗cos(x)+sin(x)∗∂ cos(x)/∂x), computed
using both the stacks, pushed on the DS. The ’=’ operator rule finally takes the value from the
DS, and compute the right hand side of Eq. 1.

An arbitrary expression composed of user defined variables or built-in functions, will itself
be represented as a sub-tree. Hence, applying the above algorithm recursively, case (3) above
(a sub-expression) will also be correctly handled.

2.1 Example

Let f (x) = sin(x) ∗ cos(x) + sin(cos(x)) (this includes three sub-expressions one of which is
a functional), represented as a tree in Fig. 1. A value of 1 is pushed on the DS whenever
a symbol from the symbol-table is pushed on the VMS. When branch 1 in the above tree is
reduced, a call to the built-in function sin pops a value from the VMS (which is x) and a value
from the DS (say dx, which is 1). It then pushes the value of sin(x) on the VMS and a value
of dx ∗ ∂ sin(x)/∂x = 1 ∗ cos(x) on the DS. Similar operations are done for evaluating cos(x).
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When the execution reaches node 2, the VMS has the values sin(x) (L) and cos(x) (R) and the
DS has cos(x) (dL) and − sin(x) (dR). Since ’∗’ is a binary operator, when node 2 is reduced,
two values each from the VMS and the DS are poped. The multiplication operator then pushes
L*R=sin(x)∗cos(x) on the VMS while L*dR + R*dL=cos2(x)− sin2(x) is pushed on the DS (note
that this uses values from the DS as well as from the VMS). Both the stacks now have one value
each - VMS the value of the sub-expression sin(x) ∗ cos(x) and the DS the value of the derivative
of this sub-expression.

Next, branch 3 is evaluated. Again, 1 and x are pushed on the DS and the VMS respectively.
A call to cos compute the derivative of cos(x) (namely, − sin(x)) and multiplies it by the top
of the DS (which is 1). When call for sin is made, its argument (cos(x)) and the derivative
of the argument are on the DS and VMS respectively. A value from the VMS and DS each (say
L=cos(x) and dL =− sin(x)) respectively) are poped. sin(L) = sin(cos(x)) and dL∗ sin(L) =

− sin(x) ∗ sin(cos(x)) are pushed on the VMS and DS respectively. This is the equivalent of Eq. 2
for branch 3. At this stage, the two values on the VMS are the values of the two sub-expression
and DS has the values of the partial derivatives of the two sub-expressions.

Reduction of the node 4 will then again invoke the rule for the derivative and the binary
operator for addition: pop two values each from the VMS and DS, push the result of the operator
on the VMS, and the derivative (dL+dR in this case) on the DS. Top of the DS now has ∂ f /∂x and
the ’=’ operator computes Eq. 1.

3 Error propagation: Algorithm for the multi-variate case

The algorithm for the multi-variate case is similar to the single-variate case described above,
but slightly more complicated. Multi-variate expressions have the added complication that the
terms in the summation of Eq. 1 have to be evaluated separately for each independent variable.
This means that a DS and a table of measurement errors (ME) per independent variable have to
be maintained.

Symbols (variables and constants) in fussy are tagged with a number or a list of numbers
(the IDs) and a type. Symbols representing normal variables are of the type VAR and have a
single unique ID, a random error and a partial derivative (of value 1) associated with them.
Symbols representing sub-expressions are of the type PARTIAL VAR and have a list of IDs and
a corresponding list of random errors and partial derivatives associated with them. List of
unique IDs and the random errors of the independent variables in the expression on the right-
hand side (RHS) of the assignment operator constitute the list of IDs and random errors for the
PARTIAL VAR type symbols. When a symbol (of either type) is pushed on the VMS, the entire
list of associated IDs is copied to the ID list of the object on the stack. The corresponding
random errors and partial derivatives are also copied in the appropriate locations in the ME table
and pushed on the appropriate DS respectively. For example, let the IDs of x1 and x2 be 1 and 2
respectively. The result of x1 ∗ x2 on the top of the VMS will have an ID list of {1,2} retaining the
information that the result is statistically dependent on the independent variates x1 and x2. If this
result is further used as part of another expression, this information will be used to propagate
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the chain rule for these variables correctly.

Since any expression is built using basic mathematical operators or built-in functions, for
the purpose of proving the correctness of the error propagation algorithm for any arbitrary ex-
pression, it is sufficient to prove that the algorithm works for the fundamental mathematical
operators and built-in functions. The algorithms for evaluating the partial derivatives involv-
ing mathematical operators and the final evaluation of the resulting error is described below as
pseudo code (see Appendix A for an example). The algorithms are described using the follow-
ing pseudo functions:

• push(S): to push the symbol or value S on the VMS.

• push(S,DS[i]): to push the symbol or value S on the ith DS.

• pop(): to pop a symbol from the VMS.

• Top(DS[i]): represents the value on the top of the ith DS.

The DS is indexed by the symbol ID(s) (say, N). When a symbol from one of the symbol tables
is pushed on the VMS, a value of 1 is pushed on DS[N] and the associated measurement error
is copied into ME[N]. L and R in the pseudo code represents the symbols on the left-hand-side
(LHS) and right-hand side (RHS) of the operator respectively. Two functions f (x, a) and g(x, b)
with one common variable (x) and one non-common variable each (a and b) are used as the
LHS and RHS operands in the explanation below.

All the operators described below are binary operators. They all pop two values from the
top of the VMS, compute the result by applying the corresponding operator, store the value in a
temporary stack object, set its ID to the union of the IDs of the operands and push it on the VMS.
These operations are performed by the following pseudo function:

ComputeResult(L,R,Expr)

{

L = pop(); R = pop();

S = Expr(L,R);

S.IDList = union(L.IDList,R.IDList);

push(S);

}

Expr implements the arithmetic of the mathematical operation on L and R.

Partial derivatives with respect to all the IDs in the ID lists of the operands are at the top
of the corresponding DSs. For all the IDs common between the two operands, two values are
poped from the corresponding DS, say dxR and dxL. The common IDs represent the variables
which are part of both the operands (here x). Operations to compute the partial derivatives
with respect to these common variables (equivalent of the ∂

∂x operator) are represented by the
pseudo function dCommonVar below. The function CommonExpr implements the arithmetic for
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the derivative computation and is set to the appropriate function for the various operators. These
values are computed for each ID in the set composed of the intersection of the ID lists of the
two operands, and pushed on the corresponding DS (here, the ID of x). Finally, all IDs common
between the two operands are removed from the ID lists of each operand.

dCommonVar(L,R,CommonExpr)

{

IDList = intersection(L.ID,R.ID);

for ID in IDList

{

dxR = pop(DS[ID]);

dxL = pop(DS[ID]);

push(CommonExpr(L,R,dxL,dxR),DS[ID]);

L.Remove(ID); R.Remove(ID);

}

}

The list of IDs of the two operands now has IDs corresponding to the non-common variables
only (a and b here). Operations for the partial derivatives of the operands with respect to these
variables is represented by the pseudo function dNonCommonVar below. LExpr and RExpr
computes the value of these derivatives for the LHS and RHS of the operator (equivalent of
computing ∂ f (x,a)

∂a and ∂g(x,b)
∂b ) using the values from the top of the appropriate DS.

dNonCommonVar(L,R,LExpr, RExpr)

{

for ID in L.IDList

Top(DS[ID]) = LExpr(L,R,Top(DS[ID]));

for ID in R.IDList

Top(DS[ID]) = RExpr(L,R,Top(DS[ID]));

}

3.1 The multiplication operator

The following code returns the result of the operator (L*R) on the top of the VMS with an ID
equal to L.ID ∪ R.ID.

Expr(L,R) {return L*R}; /* Compute the value for

ComputeResult(L,R,Expr); the multipication operator */

Following code returns the value(s) of the partial derivative(s) (here dxR*L + dxL*R) with
respect to all the common variables in the two operands, on the top of the appropriate DSs.
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Expr(L,R,dxL,dxR) {return dxR*L + dxL*R;}

dCommonVar(L,R,Expr);

The following code returns the value of the partial derivatives with respect to the variables not
common between the operands. These values are returned on the top of the DS corresponding
to the remaining IDs of the two operands.

LExpr(L,R,dx) {return dx*L};

RExpr(L,R,dx) {return dx*R};

dNoncommonVar(L,R,LExpr,RExpr)

3.2 The division operator

As before, the result of the division operator is computed as L/R and returned on the VMS using
the following code.

Expr(L,R) {return L/R}; /* Compute the value for

ComputeResult(L,R,Expr); the division operator */

For all IDs common between L and R, the partial derivative is computes as (R*dxL - L*dxR)/(R*R)
and returned on the appropriate DSs using the following code.

Expr(L,R,dxL,dxR) {return (R*dxL - L*dxR)/(R*R)};

dCommonVar(L,R,Expr);

This is equivalent to computing

∂

∂x

[
f (x, a)
g(x, b)

]
=

1
g(x, a)2

[
g(x, a)

∂ f (x, a)
∂x

− f (x, a)
∂g(x, b)
∂x

]
(3)

Next, partial derivatives with respect to each of the non-common variables are computed (here
with respect to a as 1

g(x,b)
∂ f (x,a)
∂a and with respect to b as − f (x,a)

g(x,b)2
∂g(x,b)
∂b ) and returned on the appro-

priate DSs by the following code.

LExpr(L,R,dx) {return dx/R};

RExpr(L,R,dx) {return -L*dx/(R*R)};

dNoncommonVar(L,R,LExpr,RExpr);

3.3 The addition operator

The first set of operations is same as that for other operators except that the value pushed on the
VMS is L+R.
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Expr(L,R) {return L+R}; /* Compute the value for

ComputeResult(L,R,Expr); the addition operator */

Since the partial derivatives of the expression with respect to the non-common variables is
already on the appropriate DS, no separate operation is required for these variables. The partial
derivatives with respect to the common set of variables is computed as ∂ f (x,a)

∂x and ∂g(x,b)
∂x . The

pseudo code for these operations is:

Expr(L,R,dxL,dxR) {return (dxL + dxR)};

dCommonVar(L,R,Expr);

3.4 The subtraction operator

The pseudo code for the subtraction operation is functionally same as that for the addition
operator.

Expr(L,R) {return L-R}; /* Compute the value for the

ComputeResult(L,R,Expr); subtraction operator */

/* Compute the derivative w.r.t. common variables */

Expr(L,R,dxL,dxR) {return (dxL - dxR)};

dCommonVar(Expr,L,R);

This is equivalent of computing ∂ f (x,a)
∂x −

∂g(x,b)
∂x . In addition to the above operations, the par-

tial derivatives of the RHS operand with respect to all the non-common variables needs to be
negated (here ∂g(x, b)/∂b).

IDList = union(L.IDList, R.IDList);

for ID in IDList /* unique IDs in L and R */

if (ID in R.IDList)

{

dxR = pop(DS[ID]);

push(-dxR, DS[ID]);

}

3.5 The power operator

Again, the result of the to-the-power operator (LR), with an ID equal to L.ID ∪ R.ID is pushed
on the VMS using the code:

Expr(L,R) {return LˆR}; /* Compute the value for

ComputeResult(L,R,Expr); the power operator */
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The partial derivative of the expression with respect to the common variable (here x) is com-
puted as:

∂

∂x

(
f (x, a)g(x,b)

)
= f (x, a)g(x,b)

[
g(x, b)
f (x, a)

∂ f (x, a)
∂x

+ log( f (x, b))
∂g(x, b)
∂x

]
(4)

The pseudo code for this operation is:

Expr(L,R,dxL,dxR) {return (LˆR)*((R/L)*dxL + log(L)*dxR)};

dCommonVar(L,R,Expr);

The partial derivatives with respect to the non-common set of IDs correspond to g(x, b) f (x, a)[g(x,b)−1] ∂ f (x,a)
∂a

and f (x, a)g(x,b) log( f (x, b))∂g(x,b)
∂b . Partial derivatives of f and g with respect to a and b are com-

puted using the functions LExpr and RExpr. The computed partial derivatives are pushed back
on the appropriate DSs. The pseudo code for this operation is:

LExpr(L,R,dx) {return R*(Lˆ(R-1))*dx};

RExpr(L,R,dx) {return (LˆR)*log(L)*dx};

dNoncommonVar(L,R,LExpr,RExpr);

At the terminal operators (e.g. the assignment operator ’=’), a single value (the result of the
right hand side of the terminal operator) is poped from the VMS. The propagated error is then
computed using the values from the top of all DSs corresponding to the IDs in the ID list of the
poped value. The values from these DSs are the partial derivatives of the expression with respect
to the various independent variables used in the expression on the right hand side (∂ f /∂xi in
Eq. 1). The corresponding measurement errors (δxi in Eq. 1) are in the appropriated locations
in the ME table. Using these values, Eq. 1 is evaluated. This is the final propagated error in the
expression.

4 Examples

Following are some examples to demonstrate as well as test the correctness of the error propaga-
tion algorithm of Section 3. In the following examples, various functions are written in different
algebraic forms and the results for the different forms is shown to be exactly same (e.g. cos(x)
vs.

√
1 − sin2(x), tan(x) vs. sin(x)/ cos(x)). These examples also verify that the combination of

a function and its inverse simply returns the argument (e.g asin(sin(x)) = x), as well as functions
like sinh(x)/((exp(x) − exp(−x))/2) (which is really a complicated way of writing 1!) returns a
value of 1 with no error. However, if the values of two independent variates x1 and x2 and their
corresponding errors are same, the value of expressions like sin2(x1) + cos2(x2) will be 1 but the
error will not be zero.

Value of x = 1.00000 +/- 0.10000
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Value of y = 2.00000 +/- 0.20000

Value of x1 = 1.00000 +/- 0.10000

Value of x2 = 1.00000 +/- 0.10000

sin(x) = 0.84147 +/- 0.05403

sqrt(1-sin(x)ˆ2) = 0.54030 +/- 0.08415

cos(x) = 0.54030 +/- 0.08415

tan(x) = 1.55741 +/- 0.34255

sin(x)/cos(x) = 1.55741 +/- 0.34255

asin(sin(x)) = 1.00000 +/- 0.10000

asinh(sinh(x)) = 1.00000 +/- 0.10000

atanh(tanh(x)) = 1.00000 +/- 0.10000

exp(ln(x)) = 1.00000 +/- 0.10000

sinh(x) = 1.17520 +/- 0.15431

(exp(x)-exp(-x))/2 = 1.17520 +/- 0.15431

sinh(x)/((exp(x)-exp(-x))/2) = 1.00000

x/exp(ln(x)) = 1.00000

sin(x1)*sin(x1) = 0.70807 +/- 0.09093

sin(x1)*sin(x2) = 0.70807 +/- 0.06430

sin(x1)ˆ2+cos(x1)ˆ2 = 1.00000 +/- 0.00000

sin(x1)ˆ2+cos(x2)ˆ2 = 1.00000 +/- 0.12859

4.1 Recursion

Following is an example of error propagation in a recursive function. The factorial of x is
written as a recursive function f (x). Its derivative is given by f (x)

[
1
x + 1

x−1 + 1
x−2 + · · · + 1

2 + 1
]
.

The term in the parenthesis is also written as a recursive function d f (x). It is shown that the
propagated error in f (x) is equal to f (x)d f (x)δx.

>f(x) {if (x==1) return x; else return x*f(--x);}

>df(x){if (x==1) return x; else return 1/x+df(--x);}

>f(x=10pm1)

3628800.00000 +/- 10628640.00000

>(f(x)*df(x)*x.rms).val

10628640.00000
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Figure 2: The parsing tree for f (x1, x2) = x1×x2+x1
x2

Similarly, the recurrence relations for the Laguerre polynomial of order n and its derivative
evaluated at x are given by

Ln(x) =


1 n = 0
1 − x n = 1
(2n−1−x)Ln−1(x)−(n−1)Ln−2(x)

n n ≥ 2
(5)

L′n(x) = (n/x) [Ln(x) − Ln−1(x)] (6)

These are written as recursive functions l(n,x) and dl(n,x) and it is shown that the propa-
gated error in Ln(x) is equal to L′n(x)δx.

>l(n,x){

if (n<=0) return 1;

if (n==1) return 1-x;

return ((2*n-1-x)*l(n-1,x)-(n-1)*l(n-2,x))/n;

}

>dl(n,x){return (n/x)*(l(n,x)-l(n-1,x));}

>l(4,x=3pm1)

1.37500 +/- 0.50000

>(dl(4,x)*x.rms).val

0.50000

APPENDIX

A An example of a multi-variate expression

Parsing tree for the multi-variate expression f (x1, x2) = x1×x2+x1
x2

is shown in Fig. 2. The se-
quence of operations at the stages marked by 1,2 and 3 are as follows. In the following,
<variablename>.rms() and <variablename>.ID refers to the random error and the ID as-
sociated with the variable respectively.
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1. Stage 1:

The IDs of x1 and x2 are set to 0 and 1 respectively and they are pushed on the VMS.
x1.rms() and x2.rms() are copied in ME[0] and ME[1] respectively, while a value of 1
is pushed on DS[0] and DS[1].

Operator ’*’ pops two values (say L and R) from the VMS. A value L*R with an ID equal
to L.ID ∪ R.ID is pushed on the VMS and a list of common IDs is made as IDList =
L.IDList ∩ R.IDList (here, an empty list). Next, for all IDs in L, a value is poped
from DS[L.ID] (say, dx), and dx*R is pushed back on DS[L.ID]. Similar operation is
done for all IDs in R.

Top of DS[0] and DS[1] now has x2 and x1 respectively, while the top of the VMS has the
value x1×x2 with an IDList={1,0}.

2. Stage 2:

x1 is pushed on the VMS, its ID is set to zero, x1.rms() is copied to ME[0] (a redundant
operation) and a value of 1 is pushed on DS[0].

Operator ’+’ pops two values (L and R) from the VMS (these have values x1×x2 and x1).
L+R with an IDList= L.ID ∪ R.ID is pushed back on the VMS. This IDList will be
{0,1}. For IDs common between L and R (here {0}), two values are poped from the DS,
and their addition pushed back on the DS. The common ID is then removed from the ID
list of both operands. For the remaining IDs in L (R has no IDs left), values are poped
from the corresponding DS, added together and pushed back on the appropriate DS.

Hence, at the end of the operator ’+’, DS[0] will have x2+1 and DS[1] will have x1. Top
of the VMS has the value x1×x2+x1.

3. Stage 3:

x2 is pushed on the VMS, x2.rms() is copied in ME[1] (another redundant operation) and
a value of 1 is pushed on DS[1].

Operator ’/’ pops two values (L and R) from the VMS. A value of L/Rwith an IDList=L.ID∪ R.ID
({0, 1} ∪ {0}) is pushed on the VMS. A list of common IDs between L and R is made us-
ing IDList = L.IDList ∩ R.IDList. For all IDs in IDList, two values are poped
from the corresponding DS (say, dxR (=x1) and dxL (=1)) and (R*dxL - L*dxR)/(R*R)
pushed back on the same DS. The corresponding IDs are then removed from L and R.

Next, for all the remaining IDs in L, a value is poped (say dx) from DS[L.ID] and dx/R is
pushed back on the same DS. Similarly, for all IDs in R, a value from DS[R.ID] is poped
into dx and -L*dx/(R*R) is pushed back on the same DS.

At the end of this stage, DS[0] has the value 1+1/x2 and DS[1] has the value -x1/x
2
2.

VMS now has x1×x2+x1
x2

.

Finally, the values from the top of all DSs are multiplied with corresponding values in
ME table, squared, added and the square root of the final result is taken. That value will be
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√[(
1 + 1

x2

)
× δx1

]2
+

[
−
x1
x2

2
× δx2

]2
. This is the final error propagated through the expression.

B Syntax

This appendix describes the fussy syntax. Statements are interactively executed as soon as
they are completed. The virtual code for the sub-programs (function or procedure) is held in the
memory and executed when the sub-programs are called.

B.1 Numbers

Numbers in fussy are represented as floating point numbers and can be specified with or with-
out the decimal point, or in the exponent format. Optionally, an error can also be associated with
the numbers via the pm directive. E.g., 75.3 ± 10.1 can be expressed as 75.3pm10.1. Numbers
can also be tagged with units (see Section B.1.1) or a C-styled printing format (see Section B.9).

B.1.1 Units

Numerical values can be specified along with their units. As of now, the only units supported
are degree, arcmin, arcsec, hours, minute, and seconds. These can be specified by appending
’d’, ’’’, ’"’, ’h’, ’m’, ’s’ respectively to the numeric values. Internally, all numeric
values are always stored in the MKS system of units. The default units for a variable used
to specify angles or time is radians. If the values are specified along with any of the above
mentioned units, the values are still stored internally as radians. However while printing (see
Section B.8), the values are formatted automatically and printed with the appropriate units.

B.2 Operators and built-in functions

The normal binary operators of type expr <op> expr, where expr is any expression/variable/constant
and <op> is one of ’+’, ’-’, ’/’, ’*’, ’ˆ’ and ’**’ binary operators perform the usual
mathematical operations in addition to error propagation. The comparison operators ’<’, ’>’,
’=’, ’!=’, ’<=’, ’>=’ and the logical operators ’||’ and ’&&’ have the usual meaning. Apart
from the usual operation, the var=expr assignment operator also does the error propagation in
the expression on the RHS and assigns it as the error for the variable on the LHS. In addition
to this, the assignment operator for partial variables (pvar:=expr) is also defined. This does
not propagate the errors on the RHS but instead transfers all the required information for er-
ror propagation to the variable on the LHS (see Section B.4). The result of these assignment
statements is the value of the variable on the LHS. Hence expressions like sin(x=0.1pm0.02)
are equivalent to ’x=0.1pm0.02;sin(x);’. The prefix and postfix operators <op>var and
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var<op> where <op> is either ’++’ or ’--’ and var is any user defined variable are also de-
fined. These increment or decrement the value of the variables by one. The prefix and postfix
operators operate on the variables before and after the variable is further used respectively.

In addition, two operators of type expr.<op> where <op> is either val or rms are also
defined. These operators extract the value and the associated (propagated) error in expr which
can be any mathematical expression or a variable.

B.3 Expressions/Statements

Numbers and variables can be combined with the mathematical operators and logical operators
to form an expression. Expressions can be used as arguments to built-in or user defined func-
tions (see Section B.6). An expression followed by a NEWLINE prints its result on the output
stream (see Section B.8) in the default format (see Section B.9).

For the purpose of error propagation, the print statement and the assignment operator (the
“=” operator but not the “:=” operator; see Section B.4) are treated as the terminal nodes of the
parsing tree which invokes the final error propagation.

Assigning a value to a variable also creates the variable. The type of the value assigned
to the variable determines its type (and overrides the value or the type of a previously declared
variable). E.g.

>H_0=75pm10

>H_0

75.00000 +/- 10.00000

>H_0="The Hubble constant\n"

>H_0

The Hubble constant

A semi-colon (’;’) is a delimiter to separate multiple expressions in a single line. Statements
on separate lines need not be delimited by semi-colons (though it is not an error to do so).
Compound statements are a group of simple statements, grouped using the curly-brace pair
(’{’ and ’}’) (e.g. {a=1.5; b=2;}). As may be obvious, compound statements can also be
nested. The ’/*’ and ’*/’ pair can be used as comment delimiters. Comment delimiters
however cannot be nested.

B.4 Sub-expressions

A special assignment operator ’:=’ is used to assign sub-expressions to user defined variables.
Sub-expression variables are different from normal variables in that their propagated error is
computed on-the-fly when required, i.e. when they are printed or are assigned to a normal
variable using the ’=’ operator or at an operator node of a parsing tree when used in another
expression. E.g.
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>x=1pm0.1

>s:=sin(x);c:=cos(x);

>sin(x)/cos(x) /* Compute tan(x) as sin(x)/cos(x) */

1.55741 +/- 0.34255

>s/c /* Compute tan(x) using two PARTIAL_VAR */

1.55741 +/- 0.34255

>tan(x) /* Direct computation of tan(x) */

1.55741 +/- 0.34255

>s2=s;

>s2/c /* Compute tan(x) with a normal variable

and one PARTIAL_VAR. Error propagates

differently */

1.55741 +/- 0.26236

B.5 Variables and function/procedure names

Variable/function/procedure names can be of any length and must match the regular expression
[a-zA-Z ]+[a-zA-Z0-9 ]*. That is, the names must start with an alphabet or ’ ’ and can be
followed by one or more alpha-numeric characters or ’ ’.

B.6 Function/procedure

Sub-programs can be written as functions or procedures. The only difference between functions
and procedures is that functions must return a value while procedures must not return a value.
The type of a sub-program which returns a value using the return <expression> statement
becomes func. If return is not used, or is used without an expression, the type becomes
proc. The type of the sub-program therefore need not be declared. It is an error to use a
procedure in an expression or pass a procedure as an argument to another sub-program where a
function should have been passed.

A function or procedure declaration begins with a variable name followed by an argument
list. The argument list is enclosed by a round bracket pair (’(’ and ’)’). A ’()’ specifies an
empty argument list. The function body is in enclosed between the ’{’ and ’}’ brackets. E.g.

>/* An example of a funtion declaration */

>f() { return sin(PI/2); }

>/* An example of a procedure declaration */

>p() {print "Value of f() = ",f(),"\n";}

>f()

1.00000

>p()

Value of f() = 1.00000
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A sub-program can be passed as an argument to another sub-program. An argument correspond-
ing to a sub-program can be specified using the func (for a function) or proc (for a procedure)
directive. E.g.

>f(x) { return sin(x); }

>p(func fa,x) {print "The value of f(",x%5.2f,") =",fa(x),"\n";}

>p(f,10)

The value of f(10.00) = -0.54402

All symbols (variables, functions, procedures) used in the sub-program code must be either
global variables declared before the sub-program declaration or must be one of the argument
list. Temporary variables, the scope of which is within the sub-program only, can be declared
using the auto directive. E.g.

>f(x) { return sin(x); }

>p(func fa,x)

{

auto t;

t=fa(x);

print "The value of f(",x%5.2f,") =",t,"\n";

}

>p(f,10)

The value of f(10.00) = -0.54402

B.7 Control statements

The if-else, while- and for-loops constitute the program control statements. These loops
can be broken at any stage with the use of the break statement. As of now, the conditions which
control the logic is evaluated ignoring the error with the control variables. Ultimately the goal
is to provide a language feature to specify a significance level and the conditional statements
return true if the error on the evaluated value is within the significance level, else return false.

B.7.1 if-else

The syntax for the if-else statement is:

if (condition)

if-body-statment;

or

if (condition)



Automatic random error propagation: S. Bhatnagar 18

if-body-statment else

else-body-statment;

The if-body-statement and the else-body-statement can be any valid compound or sim-
ple statement. In case of a simple statement, the terminating semi-colon is necessary.

B.7.2 while-loop

The syntax for the while-loop is:

while (condition)

body-statment

The body-statement can be either a simple or a compound statement and in case it is a simple
statement, the terminating semi-colon defines the end of the loop.

B.7.3 for-loop

The syntax for the for-loop is:

for (init;condition;incr)

body-statment

where init is a comma (’,’) separate list of simple statements for initializing the loop vari-
ables. E.g. init can be i=0,j=0,k=0. condition is a simple, single statement while incr is
a list of comma separated statement(s). The body-statement can be any valid simple or com-
pound statement. init statements are executed first followed by the condition statement. If
the result of the condition statement is non-zero (logical true), the body-statements, the
incr statement(s) and the condition statements are executed in a sequence till the result of
the condition statement is zero (logical false). E.g. following is a valid for-loop with 3
loop-variables, only one of which is checked in the condition:

for (i=0,j=0,k=0;i<10;i=i+1,j=j+1;k=k+1)

print "i= ",i," j= ",j," k= ",k,"\n";

B.8 Print statement

The print statement takes a comma separated list of objects to be printed. These objects can
be quoted-strings, variables, constants, condition statements or user defined function names.
The list can consist of any number of objects and is terminated by a semi-colon. The format
in which the numeric values are printed is defined by the format modifier associated with the
values (see Section B.9). All escaped-characters used in C-styled printing have the same effect
as in the output of the C-styled printf statement.
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B.9 Formatting

Values can be formatted for printing in a variety of ways. The format in which a variable is
printed is associated with the variable and consists of a printf styled formatting string (with
extensions for specifying the units of the numerical values as well). E.g., if x=75pm10, by
default x will be printed using the ’%10.5f’ format. The default print format can be modified
using the ’.’ operator on a variable. E.g., one can fix the default print format of x to ’%5.2f’
by x.=%5.2f.

The print format of a value can also be temporarily modified by specifying the format along
with the variable/value. E.g. the value of x can be printed in the exponent format as print x%E
or in the in hexadecimal format as print x%x.

An extra formatting, not available in printf formatting, is that of printing the individual
bit values using the %b format. With this, the value is printed in binary (1 or 0) format. %B
does the same thing except that it prints a space after every 8 bits. The value is casted into a
unsigned long integer before printing.

>x=10;x%B

00000000 00000000 00000000 00001010

If the units of a value are specified, the print format is also appropriately modified. If a variable
has units of time or angle, its print format is automatically set to %hms or %dms and are printed
in the XXhXXmXX.XXs and XXdXX’XX.XX" styles respectively.
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